Transient Ischemic Dilation

Myocardial perfusion imaging (MPI) can sometimes produce false-negative results in patients with multivessel coronary artery disease (CAD). When multiple arteries are occluded to an equivalent degree (i.e., “balanced” ischemia), the perfusion defects that occur during stress imaging may be generally uniform in severity throughout the myocardium. As a result, radiotracer uptake will also be uniform, leading to a false-negative examination.1,2

A finding of transient ischemic dilation (TID) on stress MPI (either exercise or pharmacologic) is valuable in such situations because it enables clinicians to identify patients with multivessel CAD despite otherwise normal MPI results.3-4 It also can be useful for risk stratification by serving as a clinically useful marker for severe and extensive disease,5 and as a predictor of future cardiac events.4,6

TID is found to be present when the diameter of the left ventricle (LV) cavity appears larger on poststress images as compared with resting images. It is most likely due to stress-induced subendocardial ischemia (a lack of blood supply to the innermost layer of the ventricle).7 Underperfusion of the subendocardium region causes the LV’s enlarged appearance rather than actual dilation (Figure 1).8,9

TID may also result from physical dilation (true dilation of the LV throughout the cardiac cycle, also caused by ischemia),9 or from systolic dysfunction (in which LV stunning decreases the ejection fraction at stress, thereby increasing ventricle size).10 But even if the underlying cause of TID is not completely understood, the finding of TID has been shown to be a clinically useful marker for severe and extensive CAD.5

Table 1.

<table>
<thead>
<tr>
<th>STUDY</th>
<th>SELECTED RESULTS/CONCLUSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mazzanti et al.</td>
<td>TID assessment showed high sensitivity (71%) and overall specificity (95%) for the absence of severe and extensive CAD.</td>
</tr>
<tr>
<td>McClellan et al.</td>
<td>The cardiac event rate was 1.9% in patients without TID versus 11.4% in those with TID.</td>
</tr>
<tr>
<td>Kinoshita et al.</td>
<td>The TID index was significantly greater in patients with a greater number of occluded coronary vessels (P<0.01).</td>
</tr>
<tr>
<td>Abidov et al.</td>
<td>TID yielded incremental prognostic value over clinical and historical variables in patients with otherwise normal MPI results.</td>
</tr>
<tr>
<td>Abidov et al.</td>
<td>Integrating abnormal TID ratios within MPI interpretation greatly improved identification of severe and extensive CAD in patients undergoing pharmacologic stress MPI.</td>
</tr>
<tr>
<td>Heston et al.</td>
<td>TID is a sensitive and specific marker for multivessel CAD.</td>
</tr>
</tbody>
</table>

Figure 1. Short-axis summed images show dilated cavity on stress due to hypoperfusion of the subendocardium.

Subendocardium

Rest
Stress

Adapted from McLaughlin et al.9

Figure 1. Short-axis summed images show dilated cavity on stress due to hypoperfusion of the subendocardium.

TRANSIENT ISCHEMIC DILATION PREDICTS EXTENSIVE CAD

Over the years, numerous studies have demonstrated that a finding of TID on stress MPI is predictive of extensive CAD (often confirmed by angiography), as well as significantly increased cardiac events (Table 1). Abnormal TID has correlated better with the presence of multivessel CAD than have multiple perfusion abnormalities and visual summed stress scores.3 And, patients with TID are more likely to have a cardiac event (nonfatal myocardial infarction or cardiac death) than those without TID.6
ASSESSING TID

TID is relatively easy to detect. The size of the LV is measured during stress and again at rest—often with automated software—and a ratio of the 2 measurements is computed. TID is present when the ratio falls above a “normal” limit that has ranged from 1.22 to 1.36 in various studies.5,11

It has been shown that the TID ratio is generally higher with pharmacologic stress than with exercise stress.13 A TID threshold of 1.22 or greater has been validated as having the highest sensitivity and specificity for detecting severe and extensive CAD in patients undergoing exercise stress.8 To detect severe and extensive disease with pharmacologic stress, a TID threshold of greater than 1.36 has been documented.11 The exact reason for such a difference in TID thresholds is not clearly understood, but this difference is consistent with clinical observations.14

TID has been reported in 14% to 29% of patients, depending on the patient population, stress modality, radiotrace, test protocol, and TID criteria.8,15,16 Certain patient characteristics can signal a higher likelihood of TID. In a recent study of 1560 patients with otherwise normal MPI results, those with TID tended to be older, included more women, were less able to perform exercise, and more often had diabetes.4

TID IN PATIENT MANAGEMENT

Combining abnormal TID ratios with abnormal MPI results substantially improves the ability to identify patients with severe and extensive CAD. In an algorithm proposed by Abidov et al,11 patients with both an abnormal TID ratio and abnormal MPI results have a high likelihood of severe and extensive CAD, and they should be considered for coronary angiography and possible revascularization. If both markers are negative, patients have a low probability of severe and extensive CAD and might be candidates for medical management without coronary angiography. Patients who have 1 positive marker have an intermediate likelihood of severe and extensive CAD and additional information is probably needed to make a diagnosis (Figure 2). In contrast, a more recent study showed that the presence of TID in patients with otherwise normal MPI results did not predict extensive or severe CAD.16

Patient management decisions should not be based solely on a finding of TID. When integrated with other clinical information (eg, typical angina, advanced age, diabetes), and MPI results, TID can be useful in selecting patients as candidates for further noninvasive testing or coronary angiography.5

SUMMARY

It has been reported that TID is an important finding that can help to avoid false negatives on stress MPI due to balanced, multivessel ischemia. Because it serves as a reliable marker for severe and extensive multivessel CAD, it may be a clinically useful diagnostic tool. As a reliable predictor of future cardiac events, it may provide prognostic value in identifying patients at high risk. TID is easy to assess and is most useful when integrated with other clinical information and MPI results.

Visit pharmstresstech.com for Tech Tips podcasts and interactive modules, which include an educational question-and-answer section.

References
