Left Bundle-Branch Block

Left bundle-branch block (LBBB) is a condition that occurs when the electrical impulses traveling through the left bundle branch become slowed or blocked. The right ventricle (RV) receives the electrical impulse first, causing the left ventricle (LV) to contract slightly after the RV contracts. LBBB often is a marker for coronary heart disease, cardiomyopathy, long-standing hypertension, and severe aortic valve disease.\(^1\) On electrocardiogram (ECG), the peak of the QRS complex is notched in patients with LBBB\(^2\) (Figure 1).

![Figure 1. Detailed representation of surface ECG in patients with LBBB.\(^3\)](image)

LBBB AND FALSE-POSITIVE DEFECTS WITH EXERCISE

Patients with LBBB have asynchronous ventricular contraction that worsens with exercise.\(^4,5\) During exercise myocardial perfusion imaging (MPI), images from patients with LBBB often display false-positive defects similar to those caused by coronary artery disease (CAD)\(^4\) (see Figures 2a and 2b). Because reversible septal perfusion defects, mimicking septal ischemia, are common in non-CAD patients with LBBB who are stressed with exercise (Figure 3), pharmacologic stress testing has become the preferred method of MPI in patients with LBBB and a moderate to high risk of CAD.\(^4,6\)

![Figure 2a. Treadmill images for a 63-year-old male with no history of CAD who had been diagnosed as having an LBBB. These images show a reversible perfusion defect in the anteroseptal wall, accounting for 30% of the total LV myocardium. This exercise SPECT study was technically suboptimal.](image)

![Figure 2b. Pharmacologic stress images in the same patient, showing a mild fixed perfusion defect in the septal wall, accounting for 7% of total LV myocardium. These results were interpreted as probably normal. Pharmacologic stress demonstrated benefit over exercise stress in this patient with LBBB. Based on the exercise stress test results alone, this patient may have been incorrectly diagnosed as having CAD because a large reversible septal defect was noted on imaging.](image)

![Figure 3. False-positive rates for septal defects with exercise and pharmacologic stress testing.\(^5\)](image)
UTILITY OF PHARMACOLOGIC STRESS FOR LBBB

In patients with LBBB, pharmacologic stress imaging has been associated with fewer false-positive defects. Several studies have indicated the clinical value of pharmacologic stress MPI in patients with pre-existing LBBB. Wagdy et al. evaluated 245 patients with LBBB who underwent thallium or sestamibi SPECT with a vasodilator pharmacologic stress test. In this study, high-risk was defined as having a large severe perfusion defect on the resting study (<46), at least two segments with a segmental score of ≤2 on resting images, and a global reversibility score of ≤5. The low-risk group included all other patients. As shown by pharmacologic stress imaging, death rates were lower in low-risk patients versus high-risk patients (Figure 4). The authors concluded that MPI with pharmacologic stress provides important prognostic information in patients with LBBB. The clinical utility of pharmacologic stress in LBBB patients with hypertension has also been shown.

CONCLUSION

LBBB usually causes a perfusion defect that is restricted to the septum. Because the decrease in septal blood flow in patients with LBBB seems to be dependent on heart rate, it is suggested that pharmacologic stress may result in fewer false-positive defects in patients with LBBB who are referred for a myocardial perfusion study.

References

Visit pharmstresstech.com for Tech Tips podcasts and interactive modules, which include an educational question-and-answer section.